- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kim, Inwon C (2)
-
Choi, Sunhi (1)
-
Feldman, William M (1)
-
Kim, Inwon C. (1)
-
Kim, Young-Heon (1)
-
Palmer, Aaron Zeff (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Feldman, William M; Kim, Inwon C; Palmer, Aaron Zeff (, ESAIM: Control, Optimisation and Calculus of Variations)TheIsing modelof statistical physics has served as a keystone example of phase transitions, thermodynamic limits, scaling laws, and many other phenomena and mathematical methods. We introduce and explore anIsing game, a variant of the Ising model that features competing agents influencing the behavior of the spins. With long-range interactions, we consider a mean-field limit resulting in a nonlocal potential game at the mesoscopic scale. This game exhibits a phase transition and multiple constant Nash-equilibria in the supercritical regime. Our analysis focuses on a sharp interface limit for which potential minimizing solutions to the Ising game concentrate on two of the constant Nash-equilibria. We show that the mesoscopic problem can be recast as a mixed local/nonlocal space-time Allen-Cahn type minimization problem. We prove, using a Γ-convergence argument, that the limiting interface minimizes a space-time anisotropic perimeter type energy functional. This macroscopic scale problem could also be viewed as a problem of optimal control of interface motion. Sharp interface limits of Allen-Cahn type functionals have been well studied. We build on that literature with new techniques to handle a mixture of local derivative terms and nonlocal interactions. The boundary conditions imposed by the game theoretic considerations also appear as novel terms and require special treatment.more » « less
-
Choi, Sunhi; Kim, Inwon C. (, Advanced Nonlinear Studies)Abstract We consider a nonlinear Neumann problem, with periodic oscillation in the elliptic operator and on the boundary condition. Our focus is on problems posed in half-spaces, but with general normal directions that may not be parallel to the directions of periodicity. As the frequency of the oscillation grows, quantitative homogenization results are derived. When the homogenized operator is rotation-invariant, we prove the Hölder continuity of the homogenized boundary data. While we follow the outline of Choi and Kim ( Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data , Journal de Mathématiques Pures et Appliquées 102 (2014), no. 2, 419–448), new challenges arise due to the presence of tangential derivatives on the boundary condition in our problem. In addition, we improve and optimize the rate of convergence within our approach. Our results appear to be new even for the linear oblique problem.more » « less
An official website of the United States government
